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MULTIMODE: a code to calculate rovibrational energies of

polyatomic molecules

JOEL M. BOWMAN*, STUART CARTER and
XINCHUAN HUANG

Cherry L. Emerson Center for Scientific Computation and
Department of Chemistry, Emory University, Atlanta, GA 30322, USA

This review focuses on the calculation of rovibrational energies of polyatomic
molecules using the code MULTIMODE. This code, which uses normal coordi-
nates and a hierarchical n-mode representation of the potential, aims to be
applicable to a wide class of molecules and molecular complexes. The theoretical
and computational methods used in this code are described, followed by a review
of selected applications. These applications illustrate various features of the code
and also point out some limitations of the current version of the code. The review
concludes with some ideas about possible future directions in this area of research.
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1. Introduction

The accurate calculation of rovibrational energies, in full dimensionality, of
polyatomic molecules is an important goal of computational chemistry. This goal
has been largely realized for triatomic molecules, for which a variety of efficient
spectral and grid methods have been developed. These methods generally make use
of one of several choices of coordinates for which exact Hamiltonians have been
derived. There is currently great activity and progress in extending these methods to
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tetraatomic and larger molecules [1–10]. This progress is being made in two areas.
One is the extension of curvilinear coordinate systems to larger molecules and the
derivation of the corresponding Hamiltonians. The other is in the development of
basis sets and linear algebra methods that permit the calculation of eigenvalues and
eigenfunctions of the Hamiltonian. The methods and coordinates currently used in
most approaches are quite specific to the molecule of interest. This is a necessity
given the great difficulty in obtaining ‘exact’ results for even tetraatomic systems.

An alternative approach taken by us [11] and Gerber and co-workers [12] has
been to develop codes that can be applied generally to polyatomic molecules and
molecular complexes. Both groups use as the basis of their programs the well-known
Watson Hamiltonian [13]. This Hamiltonian, which is given in terms of rectilinear
normal coordinates, is ‘universal’ for non-linear molecules. There are, however, well-
known limitations with this approach, perhaps the most serious one being the great
difficulty it has in describing very large amplitude motion, as occurs, for example, in
isomerization. Thus, while it is a universal Hamiltonian it cannot in practice be
readily applied universally.

This Hamiltonian was the basis of several codes written in the 1980s and 1990s
[14–18]. In these codes the implementation was made with several approximations,
e.g. approximate or no treatment of vibrational angular momentum terms, limita-
tion to non-rotating cases, the use of second-order perturbation theory or limited
variational methods. A critical approximation that was made in these codes was the
representation of the potential as a fairly low-order multinomial in the normal
coordinates. This representation greatly simplified the evaluation of matrix elements
of the potential; however, it also severely limited the range of applicability of the
codes and (along with other approximations) made calculations less than ‘exact’. For
this and other reasons (e.g. interest in floppy motion) these approaches based on the
Watson Hamiltonian fell out of favour during the 1990s, and indeed great progress
has been made using other Hamiltonians that, however, are not as general as the
Watson Hamiltonian.

In the past few years, we and Gerber and co-workers have re-examined the
general approach to describe vibrations of molecules based on the Watson
Hamiltonian. There are some significant differences between the codes developed
by us and by Gerber and co-workers and we point these out as we give the details of
our code. Our code, which we call MULTIMODE (MM) [11], is described in this
review along with a selection of applications which illustrate the methods used in the
code and some recent extensions of the code to describe moderately floppy motion.

The methods used in this code are described and verified in the next section.
Following that we review several varied applications of the code to a number of
interesting and challenging molecules and molecular complexes. We conclude with
some comments on future directions in this field.

2. Methods

The code MM is based on the familiar Watson Hamiltonian, which is given in
mass-scaled normal coordinates (and atomic units) by

ĤH ¼
1

2

X
ab

�
ĴJa � p̂pa

�
�ab

�
ĴJb � p̂pb

�
�

1

2

X
k

@2

@Q2
k

�
1

8

X
a

�aa þ VðQÞl, ð1Þ
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where ĴJa and p̂pa (a¼ x, y, z) are the total and vibrational angular momenta
respectively, �ab is the inverse of the effective moment of inertia and V is the
full potential in terms of the N normal coordinates denoted collectively in this
equation by Q.

The potential is the major source of non-separability in this Hamiltonian and as
mentioned above, with rare exceptions, it had been represented by a multinomial
expansion (usually to fourth order) in the normal coordinates. This approach has
obvious limitations, e.g. a limited and unknown range of applicability and accuracy.
Further, for larger molecules the numerical determination of a full multinomial
expansion can be quite difficult and cumbersome. The key approximation in MM is
to represent the potential in a novel way that permits calculations for many-mode
systems. This is done by making the following hierarchical n-mode representation of
the potential:

VðQ1,Q2; . . . ,QNÞ ¼
X
i

V
ð1Þ
i ðQiÞþ

X
ij

V
ð2Þ
ij ðQi,QjÞþ

X
ijk

V
ð3Þ
ijk ðQi,Qj ,QkÞ

þ
X
ijkl

V
ð4Þ
ijklðQi,Qj,Qk,QlÞ þ

X
ijklm

V
ð5Þ
ijklmðQi,Qj ,Qk,Ql,QmÞ þ � � � ð2Þ

In this expression the one-mode representation of the potential contains only
V

ð1Þ
i ðQiÞ terms, that is cuts through the hyperspace of normal coordinates with just

one coordinate varying at a time, the two-mode representation contains those terms
plus the V2

ij ðQi,QjÞ terms, etc. In one version of MM, which uses multidimensional
quadratures (described in detail below), the current maximum number of coupled
modes is 4. In a new version of the code, which does fits to the various n-mode terms
in equation (2), the maximum number of coupled modes is 5. It will become clear
below why this representation makes calculations for large molecules feasible. Also,
this representation of the potential affords a systematic approach to test and increase
the accuracy of a calculation. A test of the accuracy can be (and generally is) done by
examining the convergence of eigenvalues with respect to the level of mode coupling.
The accuracy of the code will increase as the level of mode coupling increases, and
this can be increased as computational resources increase.

At this point we note that the code of Gerber and co-workers [12] uses this
hierarchical representation but truncated at the two-mode representation, i.e.

VðQ1,Q2; . . . ,QNÞ ¼
X
i

V
ð1Þ
i ðQiÞþ

X
ij

V
ð2Þ
ij ðQi,QjÞ:

It is also important to credit this group with suggesting this representation. We also
note that the Watson Hamiltonian is used by Gerber and co-workers, but without
vibrational angular momentum terms and also limited to zero total angular
momentum. This approximation and limitation are not made in MM.

The theoretical approach used in MM and the Gerber group’s code builds on a
vibrational self-consistent field (VSCF) [19, 20] wavefunction for a given reference
state labelled by a set of quantum numbers. This trial wavefunction is given by a
simple Hartree product

�VSCF
n1, n2;..., nN

ðQ1,Q2; . . . ,QNÞ ¼
YN
i¼1

fðiÞ
ni
ðQiÞ, ð3Þ
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and the optimum modals wavefunctions fðiÞ
ni
ðQiÞ are obtained from the solution of

the VSCF equations for J¼ 0

Tl þ
YN
i 6¼l

fðiÞ
ni
jV þ Tcj

YN
i 6¼l

fðiÞ
ni

* +
� �ðlÞnl

 !
fðlÞ
nl
ðQlÞ ¼ 0, l ¼ 1,N, ð4Þ

where

Tl 	 �
1

2

@2

@Q2
k

, Tc 	
1

2

X
ab

p̂pa�abp̂pb �
1

8

X
a

�aa

and the integration is over the coordinates of N� 1 modals. These coupled equations
are typically solved iteratively and for low-lying reference states the iteration
procedure is usually quick, stable and efficient. (These modals are expanded in terms
of a primitive harmonic oscillator basis, resulting in a procedure that is analogous to
the Hartree–Fock–Roothan–Hall method in electronic structure calculations.) Once
convergence is achieved a VSCF Hamiltonian can be defined as

HVSCF
n1, n2;..., nN

	
X
l¼1

Tl þ
YN
i 6¼l

fðiÞ
ni
jV þ Tcj

YN
i 6¼l

fðiÞ
ni

* + !
, ð5Þ

and the eigenfunctions of this Hamiltonian form an orthonormal set. The eigenfunc-
tion �VSCF

n1, n2;..., nN
ðQ1,Q2; . . . ,QNÞ is the VSCF state and all other eigenfunctions are

termed ‘virtual states’, which we discuss further below.
It is clear that if N is larger than 4 or so the integration becomes extremely

computer intensive. It is equally clear that the n-mode representation of the
potential, given by equation (1), is a reasonable way to deal with this bottleneck.
Thus, for the two-mode representation of the potential only one-dimensional
integrals are required in these equations, and the method is extremely efficient with
this representation. Unfortunately, as we demonstrate below, this level of coupling is
not always sufficient to obtain accurate results, and thus we use a greater level of
mode coupling in MM.

It is usually necessary to go beyond the VSCF description to obtain accurate
energies. Gerber and co-workers have chosen to use second-order perturbation
theory to correct VSCF energies [12(b)]. This approach uses the virtual states defined
above to correct the VSCF expectation value of the Hamiltonian. The first-order
correction vanishes and the second-order correction is used. This is analogous to
second-order Möller–Plesset theory of electronic structure theory. Gerber and
co-workers term the resulting theory ‘correlation-corrected VSCF’ or ‘cc-VSCF’
[12(c)]. As noted already, this approach also uses the two-mode representation of the
potential and so at most two-dimensional integrals are needed in the cc-VSCF
approach. The use of second-order perturbation theory together with the two-mode
representation of the potential renders this method very efficient and thus feasible to
apply to large molecules [12(b)].

In order to go beyond the VSCF level of accuracy, we use two ‘CI’ schemes in
MM, which can give, in principle, exact results, for a given n-mode representation of
the potential. In one scheme, denoted by ‘VSCFþCI’, the many-mode wavefunction
is expanded in a basis of VSCF states. These states are not orthogonal and this
results in a generalized eigenvalue problem. This problem is solved by standard
methods. In the other scheme, denoted by ‘VCI’, the many-mode wavefunction is
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expanded in terms of the virtual states of a given VSCF Hamiltonian. Usually the
ground state VSCF Hamiltonian is used. This basis is orthonormal and results in a
standard eigenvalue problem. Both schemes have been tested on triatomic molecules
where three-mode coupling is exact and both produce variational results that
converge to the correct energy eigenvalues [11(b)].

These CI schemes can result in very large Hamiltonian matrices and so a very
flexible basis set selection method has been developed for the VCI scheme. The
scheme divides the excitations into one-mode, two-mode, three-mode and four-mode
excitations and limits the total number of quanta excited in these four classes of
mode excitation. In addition, the maximum number of excitations in any mode can
be further restricted. Thus, for example, a basis can be created in which excitations
are restricted to a subset of modes, while other modes remain in their ground states.
This could be very useful for large problems with a large number of ‘spectator
modes’. Another consideration in making this approach efficient is the numerical
evaluation of matrix elements of the potential. (For a given n-mode representation of
the potential, n-dimensional integration must be done.) In all versions of MM prior
to version 5 these matrix elements are evaluated by optimized numerical quadrature.
Finally, eigenvalues and eigenvectors of the final Hamiltonian matrix can be
obtained using either standard routines, or an iterative diagonalization routine.
Detailed descriptions of these methods can be found elsewhere [11(e)].

A new version of MM (version 5), avoids these n-dimensional quadratures by
doing fits to all (N!/n!(N� n)!) n-mode grids [21]. To illustrate this procedure
consider the example N¼ 3. In this case equation (2) reduces to

VðQ1,Q2,Q3Þ ¼ V ð1ÞðQ1Þ þ V ð1ÞðQ2Þ þ V ð1ÞðQ3Þ þ V ð2ÞðQ1,Q2Þ

þ V ð2ÞðQ1,Q3Þ þ V ð2ÞðQ2,Q3Þ þ V ð3ÞðQ1,Q2,Q3Þ:

In this expression the intrinsic n-mode potentials, V(n), are fitted using a linear least-
squares procedure in a direct-product polynomial basis in a scaled coordinate
yi¼ tanh(gQi). The procedure begins by fitting the one-mode potentials V(1). Then
two-mode potentials VðQi,QjÞ are generated and the intrinsic two-mode potentials,
given by

V ð2ÞðQi,QjÞ ¼ VðQi,QjÞ � V ð1ÞðQiÞ � V ð1ÞðQjÞ

are fitted. This procedure continues and fitting is done up to current maximum of
five-mode potentials. The advantage of using a direct-product basis for each of these
fits is that the matrix elements of the potential can be written as sums of products of
one-dimensional integrals. These integrals, which are evaluated using the usual basis
of one-dimensional contracted primitive functions, need only be evaluated once and
then stored for future use, thus avoiding the direct numerical integration of five-
dimensional integrals.

Another advantage in fitting, or interpolating [22], these n-mode potential grids
occurs when considering ‘direct dynamics’ implementations of MM. By this we mean
directly calculating the potential at the quadrature grid points. This has been done
extensively by Gerber and co-workers with, as noted already, the restriction to two-
mode grids. This approach is certainly quite feasible for such grids since each grid
requires O(102) electronic structure calculations. This number is determined by the
number of quadrature points in each n-mode grid. However, for our applications,
where typically four-mode and more recently five-mode grids are used, the effort,
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which scales like O(104) or O(105), becomes very computer intensive. (Nevertheless,

we did such a calculation for Cl�–H2O [23] for four-mode grids.) By using fits, or

interpolation of less dense grids, great savings in computational effort can be

realized, with almost no loss in accuracy.

Another obvious point to be made about either interpolating or fitting these grids

is that the full global potential is never required and relatively low-order fits are

required, even for large molecules.

Numerous applications of MM have been made to date, and these are

summarized in table 1. Tests of the code have been made for several triatomic

[11(c)] and tetraatomic [11(e)] molecules, where it has been shown to reproduce

‘exact’ results to within 0.2 cm�1 or less for states with fairly high levels of excitation

for triatomics (where three-mode coupling is exact) and to within several cm�1 or less

for moderate levels of excitation for tetraatomics. Below we present selected tests of

the code as well as some recent applications which illustrate some of the new features

of the code. Before doing that, however, we present some new calculations which

illustrate the importance of the vibrational angular momentum terms in the Watson

Hamiltonian. We also present some tests of the accuracy of using a two-mode

representation of the potential. These tests bear directly on the approach taken by

the Gerber group, which neglects vibrational angular momentum terms and uses

two-mode coupling.

3. Analysis of approximations

Here we examine the accuracy of approximations that are often made to the

Watson Hamiltonian and/or the two-mode representation of the potential, for low-

lying vibrational states of non-rotating H2O. One approximation is to represent the

potential with two-mode coupling, but to make no further approximations. Another

is to make this approximation and also to ignore the vibrational angular momentum

and Watson terms (denoted by ‘two-mode and neglect’) and the final one is to make

no approximations to the potential but to neglect the vibrational angular momentum

and Watson terms (denoted by ‘three-mode and neglect’). Converged VCI calcula-

tions were performed for H2O using an accurate potential energy surface [31]. A

comparison of the energies of low-lying states obtained with these various approx-

imations against exact ones is shown in table 2. As seen, the two-mode results are

quite accurate for some states, but for most errors are between 15 and 18 cm�1. The

errors in the ‘three-mode and neglect’ approximation are even larger for states

involving bend excitation. This is not surprising because vibrational angular

momentum terms are generally larger for a bending mode than a stretch mode.

J. M. Bowman et al.538

Table 1. A list of applications to date of the code MM and references.

Molecules Transition states Adsorbates Complexes

HCO [11(a)], HO2 [11(c)] H2OH [11( f )] CO–Cu [11(a)] Cl�–H2O [23]
H2O [11(c)], HOCl [24] HCO2 [11(h)] (CO)2–Cu [11(d )] H5O2

þ [25]
H2C [11(b)], H2CS [11(e)]
HOCO [11(g)], CH4 [26, 27]
NH3 [28], H3O

þ [21, 29, 30]
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The errors in the ‘two-mode and neglect’ calculations are in the range from �1.7
to 31.3 cm�1 with an average absolute error of 12.6 cm�1 for excitation energies.

Thus, all of these approximations produce errors that are outside the usual
standard of ‘spectroscopic’ accuracy. However, it must be noted that they are all a
vast improvement over the errors made using the harmonic approximation. The
average error made in this approximation for the excitation energies shown in the
table is 160 cm�1. Finally, it should also be noted that because three-mode coupling
is exact for H2O the two-mode coupling approximation is not as severe as it would
be in general for larger molecules. We have previously examined the convergence of
VCI results using two-, three- and four-mode coupling for Cl�–H2O [23] and CH4

[26]. The results for Cl�–H2O show large errors in the two-mode coupling
approximation (of the order of 100 cm�1 or more). This is a fairly floppy complex
and so errors of this magnitude are perhaps not surprising.

A detailed test of two-mode and also four-mode coupling for CH4, a strongly
bound molecule, is shown in table 3. The test of four-mode coupling makes use of
recent full-dimensional calculations of Yu [32], which are also given in this table.
These calculations used a ‘two-layer’ Lanczos method and coordinates that are very
suitable for this molecule. These calculations were done with the ab initio quartic

MULTIMODE: a code to calculate rovibrational energies 539

Table 3. Energies (cm�1) of low-lying vibrational states of non-rotating CH4 with respect to
the level of n-mode representation of the potential and comparison with recent full-
dimensional Lanczos calculations.

State 2 modea 3 modea 4 modea Lanczosb

ZPE 9693.1 9707.4 9707.2 —
�4(F2) 1311.7 1312.9 1313.3 1314.1
�2(E) 1531.1 1534.4 1534.5 1534.0
�1(A1) 2925.7 2948.3 2949.4 2955.8
2�4 2626.1 2621.6 2623.9 2627.2
�2þ �4 2881.6 2831.5 2836.4 2838.1
�3(F2) 3004.3 3053.7 3053.1 3056.5
2�2 3067.3 3067.2 3067.3 3069.0

a Reference [26].
b Reference [32].

Table 2. Comparison of energies (cm�1) for a two-mode representation of the potential for
H2O with no other approximations and three-mode and two-mode representations of
the potential neglecting vibrational angular momentum terms and the ‘Watson term’,
denoted by ‘3-mode and neglect’ and ‘2-mode and neglect’, respectively, with exact
energies. Excitation energies are relative to the zero-point energy (ZPE) and �b, �s, �a

are the bend, symmetric and antisymmetric stretch quantum numbers.

�b, �s, �a 2 mode 3 mode and neglect 2 mode and neglect Exact

ZPE 4636.9 4647.7 4647.6 4638.0
1, 0, 0 1593.3 1581.8 1599.3 1594.8
2, 0, 0 3167.2 3125.3 3141.7 3152.3
0, 1, 0 3655.9 3656.1 3656.7 3658.4
0, 0, 1 3742.85 3742.1 3744.7 3760.4
1, 1, 0 5222.4 5221.7 5268.7 5237.4
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force field of Lee et al. [33]. First, note that the agreement between the four-mode
and full-dimensional calculations is quite good for all of the states listed (the average
difference is 2.5 cm�1). (It will be important in the future to apply version 5 of MM
which can do five-mode coupling to see whether the small differences with the
presumed accurate full-dimensional calculations are reduced.) Second, the two-mode
results are within 15 cm�1 of the three- and four-mode energies, with the exception of
the two high frequency (degenerate) CH stretch modes �1(A1) and �3(F2). For these
states the two-mode energies are in error by 23 and 49 cm�1 respectively. Thus, for
CH4 and for other cases we have examined two-mode coupling is not a reliable level
of coupling to obtain accurate vibrational energies.

These MM calculations on CH4 and the isotopomers, CH2D2, CH3D, CHD3 and
CD4, were the first reported variational calculations using a rigorous Hamiltonian
for a nine-degree-of-freedom molecule. Since these were reported there has been a
significant amount of progress in doing variational calculations on CH4 [32, 34, 35],
including those of Yu listed in table 3. These calculations have been for CH4 only,
and also for zero total angular momentum. They all used specialized coordinates
that are highly suited for CH4. In addition, several potentials that are more realistic
than the quartic force field have been developed [27, 34]. Our efforts in this direction
have been to transform the quartic force field by replacing the stretch displacements
with Morse variables and then to adjust slightly some of the force constants to
improve agreement with experiment. The results of this work, which include
calculations for the above isotopomers and for total angular momentum 0 and 1,
have been reported [27].

4. Selected results for water systems

We have applied MM to several water systems, including rotating and non-
rotating H2O, H3O

þ and H5O
þ
2 . This series of molecules, in addition to being of

significant scientific interest, illustrates a number of the features and capabilities
of MM.

4.1. H2O
The low-lying vibrational states of H2O were presented above for zero total

angular momentum. Elsewhere [11(c)] a comparison with benchmark calculations
was done for fairly highly excited states and the agreement with the benchmark
results was excellent, except for very high excited bend states which sample the linear
configuration, for which the Watson Hamiltonian has a well-known singularity.
These calculations also exploited the C2v symmetry of H2O. Exploiting this level of
symmetry is a feature of MM.

Calculations for non-zero total angular momentum, J, can also be done with
MM. There are two options for such calculations. One is an ‘exact’ calculation and
the other is based on the adiabatic rotation approximation [11(c)]. This approxima-
tion calculates the asymmetric top rotational energy at a given nuclear geometry and
adds that energy to the potential to yield an effective potential. The approximation
neglects Coriolis coupling, and so it is a very efficient method to obtain approximate
rovibrational energies. In cases where Coriolis coupling is very small, e.g. HO2 and
HOCl, it is very accurate [11(c)]. For H2O, for which Coriolis coupling is large, this
approximation is not very accurate, e.g. energies relative to J¼ 0 are of the order of
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2% in error. However, the ‘exact’ treatment of rotation in MM does produce very
accurate results, as shown in table 4.

4.2. H3O
þ

The addition of a proton to water produces the well-known hydronium ion (also
known as oxonium) which is isoelectronic to NH3. Like NH3, H3O

þ has two
equivalent pyramidal geometries. The barrier to inversion in H3O

þ has been
calculated by us [21] and by Halonen and co-workers [36], using similar high-level
ab initio calculations, to be 690 cm�1. This is roughly half the value of the barrier in
NH3, and this leads to much larger splittings in H3O

þ than in NH3. We recently
reported a full-dimensional, ab initio potential energy surface and full dimensionality
calculations of the rovibrational energies of H3O

þ and isotopomers, D3O
þ, H2DOþ

and HD2O
þ [21]. The vibrational calculations were done using MM (versions 4 and

the new version 5) and the exact code RVIB4. RVIB4 is a code specifically developed
to describe ammonia and ammonia-like molecules [28, 37]. (Both MM and RVIB4
were also recently applied to obtain rovibrational energies and splittings of NH3

[28]). We review the highlights of the modifications in MM that were necessary to
perform accurate calculations of vibrational energies H3O

þ.
The normal coordinates in the Watson Hamiltonian are obtained by diagonaliz-

ing the force-constant matrix at a reference stationary point, which usually is the
global minimum of a potential. For molecules like NH3 and H3O

þ, where there are
two symmetric minima, separated by a substantial barrier, and where tunnelling
splittings are significant, this approach will obviously encounter serious difficulties.
Nevertheless, this approach can be and was implemented by Wright and Gerber
[12(e)], who chose one minimum as the reference geometry. Not only were the
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Table 4. Comparison of rovibrational energies of H2O (cm�1) for J¼ 3 and low-lying
vibrational states (�b, �s, �a), relative to the ZPE. The first column of energies
contains exact calculationsa and the second column is from MM.

Ka Kc Ka Kc

0, 0, 0 1, 0, 0

ZPE 4637.97a 4637.97b

0 3 136.76a 136.85b 0 3 1731.92 1732.77
1 3 142.28 142.32 1 3 1739.52 1739.68
1 2 173.37 173.41 1 2 1772.44 1772.63
2 2 206.30 206.36 2 2 1813.82 1813.88
2 1 212.15 212.14 2 1 1819.36 1818.60
3 1 285.22 285.25 3 1 1907.48 1907.38
3 0 285.42 285.45 3 0 1907.64 1907.52

2, 0, 0 0, 1, 0

0 3 3289.23 3290.64 0 3 3791.36 3791.45
1 3 3299.99 3300.25 1 3 3796.53 3796.59
1 2 3334.62 3334.93 1 2 3827.37 3827.44
2 2 3387.68 3387.74 2 2 3858.86 3858.98
2 1 3392.74 3391.43 2 1 3864.76 3864.83
3 1 3500.51 3500.30 3 1 3935.20 3935.37
3 0 3500.64 3500.39 3 0 3935.34 3935.57

a Reference [31].
b Reference [11(c)].
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vibrational energies obtained (with an interesting new ‘partially separable VSCF

method’) not split by the inversion barrier but the degeneracy of the OH stretch

modes was not well described.

Our solution to this symmetric double-well problem has been to choose the

inversion saddle point (ISP) (of D3h symmetry) as the reference geometry [29]. This

choice treats the two C3v minima equivalently, leading to a proper description of the

tunnelling dynamics and overall symmetry of the wavefunction. The normal mode

analysis at the ISP produced, as expected, one imaginary frequency normal mode,

which we denote by Q1. Motion along this mode alone does approach the two

minima; however, the energy at the mimima of this cut in the full-dimensional

potential is signficantly above the global minima. This is not unexpected, since the

other normal modes of the ISP are different from zero at the global minima. In

figure 1 we show a contour plot of the potential energy surface in two ISP modes, Q1,

the imaginary frequency normal mode, and the symmetric OH stretch, which we

denote by Q2 in this figure. It is interesting that the ‘reaction’ path connecting the

two minima and the saddle point is highly curved. Also, because of symmetry

considerations, these two modes are sufficient to describe the global minima.

However, as we determined in calculations, this does not imply that two-mode

coupling is sufficient to describe the vibrations. Certainly, the choice of ISP normal

coordinates will not be ‘optimum’ for the two minima, and thus a fairly high level of

mode coupling beyond two-mode coupling was expected and found.
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Figure 1. Equipotential contour plot (in cm�1) of the full-dimensional ab initio potential of
H3O

þ in the two normal modes of the inversion saddle point described in detail in
the text.
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The details of the implementation of this approach have been given elsewhere

[29, 30], so we omit them here. However, we do note that the numerical basis for the

imaginary mode was obtained using a relatively large primitive harmonic oscillator

basis and with a frequency that is user supplied. This numerical basis must be quite

large so that it spans both minima and the saddle point region. We also included a

simple optimization procedure to describe relaxation of the other normal coordi-

nates as Q1 varies. (It is important to note that another approach to this double-well

problem is the very significant ‘reaction path’ extension of MM [38, 39], which we

do not review here. In the last section of this review we describe this extension

briefly.)

Results of these calculations are shown in table 5. There we compare vibrational

energies and splittings obtained using MM version 4, which used four-mode

coupling, MM version 5 (which does fits to the various n-mode potentials), which

used 5-mode coupling, and the ‘exact’ results from the specialized code RVIB4. The

quantum number labelling in this table is according to the normal modes of the ISP

starting with the imaginary frequency ‘umbrella’ mode and increasing according to

increasing harmonic frequency. The signs ‘þ’ and ‘�’ in parentheses indicate the

symmetry as symmetric and antisymmetric with respect to inversion through the

barrier. To verify that MM version 5 calculations are reliable, four-mode results

from that code are also given. First, as seen, there is excellent agreement between the

four-mode calculations using versions 4 and 5 of MM. Second, note the general

excellent agreement between the four-mode calculations and the ‘exact’ RVIB4 ones,

with the exception of the states 000010(þ) and 000010(�). The energies of these

states should be rigorously degenerate with those of 000001(þ) and 000001(�). The

slight splitting of this degeneracy at the four-mode coupling level is essentially

corrected using five-mode coupling, with a subsequent very good agreement with the

RVIB4 results. Thus, it is very satisfying that MM can describe the vibrational

splittings and energies of this challenging molecule accurately.

It remains only to compare these vibrational energies and splittings with

experiment. This was done in detail previously [21]; here we summarize this

MULTIMODE: a code to calculate rovibrational energies 543

Table 5. Comparison of vibrational energies (cm�1) of H3O
þ obtained from MM version 4,

version 5.0 and exact RVIB4 calculations. Excitation energies are relative to the ZPE.

State 4-mode MM_4 4-mode MM_5 5-mode MM_5 RVIB4

ZPE 7450.5 7450.9 7450.9 7450.6
000000(�) 46.7 46.7 46.6 46.4
100000(þ) 580.5 580.5 580.5 580.4
100000(�) 934.0 934.0 934.0 933.6
010000(þ) 1623.7 1623.7 1624.8 1623.7
010000(�) 1682.8 1682.8 1683.8 1681.2
001000(þ) 1623.6 1623.5 1624.6 1623.7
001000(�) 1682.5 1682.4 1683.5 1681.2
000100(þ) 3400.0 3399.9 3399.9 3399.7
000100(�) 3439.0 3439.0 3438.6 3437.5
000010(þ) 3537.4 3537.5 3534.3 3533.3
000010(�) 3575.0 3575.1 3567.8 3565.3
000001(þ) 3534.0 3533.9 3534.1 3533.3
000001(�) 3567.7 3567.8 3567.4 3565.3
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comparison in figure 2. As seen there is very good agreement with experiment [40]
and these completely ab initio calculations.

4.3. H5O
þ
2

The protonated water dimer, H5O
þ
2 , is almost certainly an important inter-

mediate in the proton transfer reaction

H3O
þ
þH2O ! ½H5O

þ
2 � ! H2O þ H3O

þ:

Little is known experimentally about this ion. Several OH stretch fundmental
energies have been reported in molecular beam experiments [41]. Very recently a
low resolution, infrared multiphoton dissociation experiment was reported [42].
Assignments of the observed low-frequency intermolecular proton modes were made
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þ.
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on the basis of model calculations [43], which did not include any coupling of these
modes to the inter- and intramolecular monomer modes. Calculations of vibrational
energies of H5O

þ
2 have also been reported by Gerber and co-workers [44], but with

two-mode coupling only. The experimental assignments mentioned above were not
based on these calculations, which, although limited to two-mode coupling, do
include the monomer modes.

An accurate, full-dimensional treatment of the vibrations of H5O
þ
2 is quite

challenging, even beyond the problem of the high dimensionality (15 degrees of
freedom), owing to a large degree of ‘floppiness’. Limited, although high quality
ab initio calculations [45] indicate that the global minimum has a slightly bent
O–Hþ–O geometry, with a small barrier, i.e. less than 100 cm�1 separating two
mirror image minima.

Very recently we reported preliminary four-mode coupling calculations of the
vibrational energies of H5O

þ
2 using MM (version 4) [25]. This report focused on the

ZPE, which was also calculated by an elaborate and full-dimensionality diffusion
Monte Carlo calculation. These calculations used the full-dimensional potential
of Ojamäe et al. [46], denoted by OSS3(p), which was based on a fit to several
thousand ab initio calculations at the MP2 level of theory. This potential is not of
spectroscopic accuracy; however, it is quite realistic and currently the only full-
dimensional potential which does describe the low barrier between the two slightly
non-collinear minima mentioned above.

As in the case of H3O
þ the reference geometry chosen for the MM calculations is

a saddle point. Specifically, the reference geometry is for a collinear O–Hþ–O
geometry with the proton midway between the two O atoms. On the OSS3(p)
potential this is a second-order saddle point with two imaginary frequency modes.
The potential in these two modes with the remaining 13 held fixed at zero is shown
in figure 3. As seen, the potential is quite flat but with steep repulsive walls. Clearly
the proton motion will be highly delocalized in these two degrees of freedom and,
unlike H3O

þ, which has a much larger barrier separating the two minima (roughly
700 cm�1), doublet splittings are not expected in the spectrum as a result of this low
barrier and were not found in the MM calculations. Further evidence for delocaliza-
tion is that the lowest energy fundamental is at 310 cm�1, which is well above the
barrier separating the two equivalent minima. Definitive evidence of delocalization
comes from the diffusion Monte Carlo calculation, which shows delocalization over
the two minima of the zero-point wavefunction.

We conclude this section on H5O
þ
2 with an investigation of a four degree-of-

freedom model of the proton and OO stretch modes. As mentioned above, such a
reduced-dimensionality model was used to assign an experimental spectrum. This
model calculation introduced an additional approximation, however, with an
adiabatic separation of the four modes into two groups of two, the two bends, the
OO stretch and the proton asymmetric stretch. In this model there are three
Cartesian coordinates for the proton (with the origin at the centre of the OO bond)
and a fourth degree of freedom, the OO stretch. These modes are present in the full-
dimensional description of H5O

þ
2 (at least at the level of normal modes) and so it is

possible to isolate these modes in an approximate MM calculation. This was done by
using a large basis for mixing in these four modes, but restricting the basis in the
remaining 11 modes to a single basis function (the ground vibrational state in each
mode). This is not a perfect decoupling since there is some average interaction with
the ground vibrational state of these other spectator modes. However, by comparing
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the fundamental energies of the three proton modes plus the OO stretch with our
previous calculations which use a large basis in all modes, we can determine the effect
of dynamic mode coupling. This is done in table 6. As seen, there are significant
differences between these two calculations for the OO stretch and proton asymmetric
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Figure 3. Equipotential contour plot (in cm�1) of the full-dimensional ab initio potential of
H5O

þ
2 in the two normal modes of the second-order saddle point described in detail

in the text.

Table 6. Comparison of energies (in cm�1) of fundamentals of H5O
þ
2

calculated using the reduced dimensionality (spectator) and coupled
methods as explained in the text. Modes of interest are labelled.

Mode 4-mode spectator 4-mode coupled

1 — 516
2 — 310
3 — 583
4 — 590
5 — 569
OO stretch 646 564
O–Hþ–O asymmetric 1071 914
X bend 1354 1369
Y bend 1372 1380
10 — 1646
11 — 1809
12 — 3319
13 — 3427
14 — 3468
15 — 3472
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stretch, but fairly good agreement for the two proton bend modes is found. This is
understandable since the two bend modes are approximately orthogonal to the OO
axis and thus motion in these modes is approximately orthogonal to the H2O
monomers. However, both the OO stretch and the asymmetric proton stretch are
parallel to the OO axis and so these modes interact with the monomers, which allows
for some relaxation of the energies.

5. Summary and prognosis

In summary, we have reviewed methods used and applications of two versions of
the code MULTIMODE (MM), which does rovibrational energies of general
polyatomic molecules. The code is based on the general Watson Hamiltonian and
makes use of a hierarchical n-mode representation of the exact potential. The first
version of the code makes direct use of the exact potential on grids determined by
optimized quadrature points and is limited to a maximum of four-mode coupling.
The newer version fits the potential on grids, which may be much sparser than the
ones corresponding to quadrature points. These fits result in highly efficient
evaluation of matrix elements and thus five-mode coupling is done in version 5 of
MM. Both versions uses two ‘CI’ schemes to obtain rovibrational energies. Both
schemes begin with a VSCF procedure. The CI schemes use a non-orthogonal VSCF
basis or an orthogonal virtual basis of the zero-point VSCF state. Both versions can
utilize normal coordinates determined at a saddle point separating two minima on
the global potential. This feature permits the calculation of tunnelling splittings in
the case of a large barrier separating these minima.

Futures directions for development of MM will certainly include increasing the
level of mode coupling. Also, further work on and applications with the reaction
path version of MM [30, 38] is warranted. This code can describe internal rotation,
for example in methanol and other large floppy molecules. A similar code, in spirit if
not in practice, has been developed by Luckhaus and Quack and applied to cis–trans
isomerization in H2O2 [47]. The determination of the potential will continue to
present major challenges to all methods. The advantage of using an n-mode
representation of the potential is that the full-dimensional potential is not required.
This fact has been exploited to very good effect by Gerber and co-workers and by us,
and this will continue to receive attention, especially in using ‘direct’ ab initio codes
to obtain the potential on the n-mode grids.
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